MID-SECTION
Section 5B – Power Trim Design I (Showa)

Table of Contents

<table>
<thead>
<tr>
<th>Power Trim Specifications</th>
<th>5B-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Tools</td>
<td>5B-2</td>
</tr>
<tr>
<td>Power Trim Components</td>
<td>5B-4</td>
</tr>
<tr>
<td>Power Trim Motor</td>
<td>5B-6</td>
</tr>
<tr>
<td>Power Trim - General Information</td>
<td>5B-7</td>
</tr>
<tr>
<td>Description</td>
<td>5B-7</td>
</tr>
<tr>
<td>Trimming Characteristics</td>
<td>5B-7</td>
</tr>
<tr>
<td>Trailer Outboard</td>
<td>5B-8</td>
</tr>
<tr>
<td>Tilting Outboard Manually</td>
<td>5B-8</td>
</tr>
<tr>
<td>Trim “In” Angle Adjustment</td>
<td>5B-9</td>
</tr>
<tr>
<td>Striker Plate Replacement</td>
<td>5B-9</td>
</tr>
<tr>
<td>Anode Plate</td>
<td>5B-10</td>
</tr>
<tr>
<td>Trim Indicator Gauge</td>
<td>5B-10</td>
</tr>
<tr>
<td>Check, Fill and Purge - Power Trim System</td>
<td>5B-10</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>5B-12</td>
</tr>
<tr>
<td>Power Trim System with Relays and 2 Wire</td>
<td>5B-14</td>
</tr>
<tr>
<td>Trim Motor</td>
<td>5B-14</td>
</tr>
<tr>
<td>Electrical System Troubleshooting</td>
<td>5B-15</td>
</tr>
<tr>
<td>General Checks</td>
<td>5B-15</td>
</tr>
<tr>
<td>Troubleshooting the “Down Circuit”</td>
<td>5B-15</td>
</tr>
<tr>
<td>Troubleshooting the “Up” Circuit</td>
<td>5B-16</td>
</tr>
<tr>
<td>Troubleshooting the “Down” and “Up” Circuits (All Circuits Inoperative)</td>
<td>5B-17</td>
</tr>
<tr>
<td>Power Trim Assembly Removal and Installation</td>
<td>5B-18</td>
</tr>
<tr>
<td>Removal</td>
<td>5B-18</td>
</tr>
<tr>
<td>Testing Power Trim System With Test Gauge Kit (91-52915A6)</td>
<td>5B-23</td>
</tr>
<tr>
<td>“UP” Pressure Check</td>
<td>5B-23</td>
</tr>
<tr>
<td>“DOWN” Pressure Check</td>
<td>5B-26</td>
</tr>
<tr>
<td>Hydraulic Repair</td>
<td>5B-28</td>
</tr>
<tr>
<td>Trim Rod End Cap Seal</td>
<td>5B-29</td>
</tr>
<tr>
<td>Tilt Ram</td>
<td>5B-30</td>
</tr>
<tr>
<td>Disassembly</td>
<td>5B-31</td>
</tr>
<tr>
<td>Scraper Seal Replacement</td>
<td>5B-34</td>
</tr>
<tr>
<td>Motor and Electrical Tests/Repair</td>
<td>5B-38</td>
</tr>
<tr>
<td>Trim Pump Motor Test</td>
<td>5B-38</td>
</tr>
<tr>
<td>Motor Disassembly</td>
<td>5B-38</td>
</tr>
<tr>
<td>Armature Tests</td>
<td>5B-39</td>
</tr>
<tr>
<td>Motor Repair</td>
<td>5B-40</td>
</tr>
<tr>
<td>Reassembly</td>
<td>5B-44</td>
</tr>
<tr>
<td>Reassembly - Motor and Pump</td>
<td>5B-46</td>
</tr>
<tr>
<td>Priming Power Trim System</td>
<td>5B-47</td>
</tr>
<tr>
<td>Trim Sender Test</td>
<td>5B-47</td>
</tr>
<tr>
<td>Trim Indicator Gauge Needle Adjustment</td>
<td>5B-48</td>
</tr>
<tr>
<td>Trim Indicator Wiring Diagrams</td>
<td>5B-49</td>
</tr>
</tbody>
</table>

Power Trim Specifications

<table>
<thead>
<tr>
<th>POWER TRIM</th>
<th>Design I (Showa)</th>
<th>Trim “UP”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Trim “DOWN”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leak Down Design I & II</td>
</tr>
</tbody>
</table>

	1300 PSI (91kg/cm²)
	Maximum Pressure
	500 PSI (35kg/cm²)
	Minimum Pressure

Maximum Acceptable Amount of Leak Down in 24 hours is 1 in. (25.4 mm)
Special Tools

1. Alignment Tool 91-11230

2. Trim Rod Removal Tool 91-44486A1

3. Trim Rod Guide Removal Tool 91-44487A1

4. Power Trim Test Gauge Kit 91-52915A6
5. Adaptor Fitting 91-82278A2 and 91-82278A3

6. Spanner Wrench 91-74951

7. Multi-Meter DVA Tester 91-99750A1 or DMT 2000 Digital Tachometer Multi-meter 91-854009A1

- Multi-Meter DVA Tester 91-99750A1
- DMT 2000 Digital Tachometer Multi-meter 91-854009A1
Power Trim Components

- Loctite 271 (92-809820)
- Anti-Corrosion Grease (92-78376A6)
- GM Silicone Sealer (92-91600-1)
- Power Trim & Steering Fluid (92-90100A12)
Power Trim Components

<table>
<thead>
<tr>
<th>REF. NO.</th>
<th>QTY.</th>
<th>DESCRIPTION</th>
<th>TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>1</td>
<td>POWER TRIM ASSEMBLY–Complete</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MANIFOLD ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>PIPE PLUG</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>TILT CYLINDER ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>PISTON ROD</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>GUIDE KIT</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>REPAIR KIT</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>CHECK VALVE KIT</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>GUIDE ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>PISTON/ROD ASSEMBLY (PORT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PISTON/ROD ASSEMBLY (STBD.)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>TRIM FILTER ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>VALVE ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>E RING</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>O RING KIT</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>PUMP</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>PLUG ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>SCREW</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>WASHER</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>COVER</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>DRIVE SHAFT</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>TRIM MOTOR (Breakdown on Power Trim Motor)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>SCREW (LONG)</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>SCREW (SHORT)</td>
<td>80</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>SHAFT ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>PIPE PLUG</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>GROOVE PIN</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>GROOVE PIN</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>SHAFT</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>ANODE ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>SCREW (M6 x 1 x 25)</td>
<td>70</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>WASHER</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>SCREW (M10 x 1.5 x 30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>WASHER</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>DECAL—Caution power trim</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>SCREW (10-16 x 3/5 IN.)</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>C WASHER</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>CLAMP</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>TUBING</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>STA-STRAP</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>FILTER SCREENS</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Lubricate all o-rings with ATF Dexron III or Power Trim and Steering Fluid.
Power Trim Motor

Parts List

<table>
<thead>
<tr>
<th>REF. NO.</th>
<th>QTY.</th>
<th>DESCRIPTION</th>
<th>TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>POWER TRIM MOTOR</td>
<td>lb.in.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>BRUSH AND SEAL KIT</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>ARMATURE KIT</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>END FRAME (Complete)</td>
<td></td>
</tr>
</tbody>
</table>
Power Trim - General Information

Description

The Power Trim System consists of an electric motor, pressurized fluid reservoir, pump, tilt cylinder, and two trim rams.

The remote control (or trim panel) has switches that trim the outboard “Up” or “Down” and tilt the engine for “Trailering”. The outboard can be trimmed and tilted under power or when the outboard is not running.

Trimming Characteristics

NOTE: Because hull designs react differently in varying water conditions, varying the trim position will often improve the ride and boat handling. When trimming from a mid-trim position (with outboard trim tab in a straight fore and aft position), expect the following:

TRIMMING OUTBOARD “UP” (OUT):

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive trim “Out” may reduce the stability of some high speed hulls. To correct instability, reduce the power gradually and trim the outboard “In” slightly before resuming high speed operation. A rapid reduction in power will result in a sudden change of steering torque and may cause additional boat instability.</td>
</tr>
</tbody>
</table>

Will lift boat bow, increasing top speed.

Transfers steering torque harder to port (left) on installations below 23 in. (584.2 mm) transom height.

Increases gearcase clearance over submerged objects.

Excess trim can cause “porpoising” and/or ventilation.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive outboard trim angle will result in insufficient water supply causing water pump and/or powerhead overheating damage. Insure water level is above water intake holes whenever outboard is running.</td>
</tr>
</tbody>
</table>

The “Up” circuit actuates the up relay (under outboard cowl) and closes the motor circuit. The electric motor drives the pump, forcing fluid thru passageways into the up side of the trim cylinders.

The trim cylinders position the outboard at the desired trim angle in the 20 degree maximum trim range. The system will not allow the outboard to be trimmed above the 20 degree trim range as long as the engine RPM is above approximately 2000 RPM.

The outboard can be trimmed above the 20 degree maximum trim angle (for shallow water operation, etc.), by keeping the engine RPM below 2000. If the RPM increases over 2000, propeller thrust (if propeller is deep enough) will cause the trim system to return the outboard to the 20 degree maximum trim position.
TRIMMING OUTBOARD “DOWN” (IN):

WARNING

Excessive speed at minimum trim “In” may result in undesirable and/or unsafe steering conditions. Test for handling characteristics after any adjustment is made to the trim angle (and tilt pin location).

Aids planing, particularly with heavy loads.

Improves ride in choppy water conditions.

Excess trim “In” can cause “bow steer” (boat veers to left or right).

Transfers steering torque to starboard (right).

Improves acceleration to planing speed.

The “Down” circuit actuates the down relay (under engine cowl) and closes the motor circuit. The electric motor drives the pump in the opposite direction as the up circuit, forcing fluid thru passageways into the “down” side of the tilt ram. The tilt ram moves the engine down to the desired position.

Trailering Outboard

The “Up” circuit first moves the trim cylinders; when the trim cylinders extend fully, the tilt ram extends to tilt the outboard to the full up position for trailering.

Before the boat is trailered, the operator should check for clearance between the outboard skeg and pavement to prevent damage to skeg from striking pavement.

If the outboard must be tilted for clearance between skeg and pavement, a device such as a “Transom Saver” should be installed to prevent stress to boat transom from outboard weight while the boat/outboard are being trailered.

Tilting Outboard Manually

WARNING

Before opening the manual release valve, insure all persons are clear of outboard as outboard will drop to full “Down” when valve is opened.

The outboard can be raised or lowered manually by opening the manual release valve 3 to 4 turns counterclockwise. Close manual release valve to hold outboard at the desired tilt position.

![Diagram of manual release valve](51353)

a - Manual Release Valve
Trim “In” Angle Adjustment

WARNING

Boat operation with outboard trimmed to the full “In” trim angle [not using the trim angle adjustment bolt (a)] at planing speed may result in undesirable and/or unsafe steering conditions. A water test for handling/steering conditions is required after any trim angle adjustments.

IMPORTANT: Some boat/motor combinations not using the trim angle adjustment pin (a) and trimmed to the full “In” trim angle position may not exhibit any undesirable and/or unsafe handling and/or steering characteristics at planing speed. If so, not using the trim angle adjustment bolt may be advantageous to acceleration and planing. A water test is required to determine if these characteristics apply to a particular boat/motor combination.

![Diagram](image)

a - Trim Angle Adjustment Bolt

Striker Plate Replacement

Visually inspect striker plates and replace if worn excessively.

![Diagram](image)

a - Striker Plate (2)
b - Lockwasher
c - Locknut. Torque to 80 lb. in. (9 Nm)
Anode Plate

Anode plate is a self-sacrificing alloy plate that is consumed gradually by corrosion while providing protection to the midsection and power trim from galvanic corrosion. Replace anode plate when it is 50% consumed.

![Diagram of Anode Plate](image)

a - Anode Plate

IMPORTANT: Do not paint or place protective coating on anode plate, or corrosion protection function will be lost.

Trim Indicator Gauge

A Quicksilver Trim Indicator Gauge accessory kit is available for the power trim sender (if not previously installed).

Check, Fill and Purge - Power Trim System

TO CHECK:

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt outboard to full “Up” position and engage tilt lock lever before checking fluid level. System is pressurized. Extend trim and tilt rams fully to depressurize system.</td>
</tr>
</tbody>
</table>

Remove fill plug and O-ring. System is full when oil level is present at filler hole. Tighten fill plug securely.

NOTE: Automatic Transmission Fluid (ATF) Type F, FA, Dexron II or Dexron III may be used.

![Diagram of Tilt Lock Lever](image)

a - Tilt Lock Lever
TO FILL:

IMPORTANT: This trim system is pressurized. Remove “Fill” plug only when outboard is tilted to the full “Up” position or the trim/tilt rams are fully extended. Retighten “Fill” plug before tilting outboard down or retracting tilt/trim rams. Remove “Fill” plug and O-ring. System is full when oil level is present at fill hole. Tighten “Fill” plug securely.

![Diagram](image)

- **a** - Fill Plug and O-ring (remove to fill system, tighten securely)
- **b** - Oil Can (fill system with Quicksilver Power Trim and Steering Fluid)
- **c** - Tilt Lock Lever (engage to support engine in “Up” position)

TO PURGE:

IMPORTANT: Fill plug and O-ring must be tightened securely before purging system.

IMPORTANT: Run Trim System in short “jogs” until pump is primed and trim system moves. If trim motor is run without priming pump, driveshaft failure could result.

Cycle outboard through entire trim/tilt range 4 times. Check fluid level after purging system.

Push down on outboard when trim rams are slightly extended. If rams retract more than 1/8 in. (3.2 mm), air is present in system. Cycle system again and check fluid level.
Troubleshooting

IMPORTANT: Determine if Electrical or Hydraulic problem exists.

IMPORTANT: Acceptable power trim leak down should not exceed 1 in. (25.4 mm) (when measured at the tilt ram) in a 24 hour period.

HYDRAULIC SYSTEM TROUBLESHOOTING

IMPORTANT: Make one correction at a time. Check operation of trim system before proceeding to the next check.

### CONDITION OF TRIM SYSTEM	PROBLEM
A. Trim motor runs; trim system does not move up or down. | 1, 2, 5, 10
B. Does not trim full down. Up trim OK. | 2, 3, 4
C. Does not trim full up. Down trim OK. | 1, 6
D. Partial or “Jerky” down/up. | 1, 3
E. “Thump” noise when shifting. | 2, 3, 6, 7
F. Does not trim under load. | 5, 8, 9, 10
G. Does not hold trim position under load. | 2, 5, 6
H. Trail out when backing off from high speed. | 3, 4
I. Leaks down and does not hold trim. | 2, 5, 7
J. Trim motor working hard and trims slow up and down. | 8, 9
K. Trims up very slow. | 1, 2, 8, 9
L. Starts to trim up from full down position when “IN” trim button is depressed. | 3, 4
M. Trim position will not hold in reverse. | 3, 4

PROBLEM

1. Low oil level.
2. Pump assembly faulty.
3. Tilt ram piston ball not seated (displaced, dirt, nickel seat).
4. Tilt ram piston O-ring leaking or cut.
6. Lower check valve not seating in port side trim ram.
7. Upper check valve not seating in port side trim ram.
8. Check condition of battery.
9. Replace motor assembly.

External Mounted Hydraulic System
ELECTRICAL SYSTEM TROUBLESHOOTING

CONDITION OF TRIM SYSTEM	PROBLEM
A. Trim motor does not run when trim button is depressed. | 1, 2, 4, 5, 6, 7, 8
B. Trim system trims opposite of buttons. | 3
C. Cowl mounted trim buttons do not activate trim system. | 2, 4, 5, 6, 7

PROBLEM

1. Battery low or discharged.
2. Open circuit in trim wiring.
3. Wiring reversed in remote control, cowl switch or trim leads.
4. Wire harness corroded through.
5. Internal motor problem (brushes, shorted armature).
6. Blown fuse(s).
7. Trim switch failure.
8. Verify relays are functioning correctly.

POWER TRIM RELAY TEST PROCEDURE

The trim motor relay system used on permanent magnet trim systems connect each of the two wires from the trim motor to either ground or positive in order to allow the motor to run in both directions.

If the motor will not run in the UP direction, it could be either the UP relay is not making contact to 12 volts OR the DOWN relay is not making contact to ground. The opposite is true if the system will not run DOWN. When the system is not energized, both relays should connect the heavy motor leads to ground.

To test which relay is faulty if the trim system does not operate in one direction:
1. Disconnect the heavy gauge pump wires from the trim control relay.
2. Check for continuity between the heavy leads from the trim relays to ground.

<table>
<thead>
<tr>
<th>Ohmmeter Leads Between</th>
<th>Resistance (Ohms)</th>
<th>Scale Reading*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEN and Ground</td>
<td>0</td>
<td>Full Continuity (Rx1)</td>
</tr>
<tr>
<td>BLUE and Ground</td>
<td>0</td>
<td>Full Continuity (Rx1)</td>
</tr>
</tbody>
</table>

Replace the relay that does not have continuity.

3. Connect a voltmeter to the heavy BLUE lead and to ground. You should have 12 volts on the BLUE lead when the UP switch is pushed. You should also have 12 volts on the GREEN lead when the DOWN switch is pushed. Replace the relay that does not switch the lead to positive.
Power Trim System with Relays and 2 Wire Trim Motor

BLK = Black
BLU = Blue
GRN = Green
RED = Red
WHT = White
Electrical System Troubleshooting

General Checks

Before troubleshooting the Power Trim electrical system, check the following:

1. Check for disconnected wires.
2. Make certain all connections are tight and corrosion free.
3. Check that plug-in connectors are fully engaged.
4. Make certain battery is fully charged.

Refer to the preceding four wiring diagrams for connection points when troubleshooting the electrical systems (Connection points are specified by number.)

Troubleshooting the “Down Circuit”

- Connect Voltmeter red lead to Point 1 and black lead to ground. Depress the “Down” trim button.

 - Battery Voltage Indicated: Connect Voltmeter red lead to Point 3.

 - Battery Voltage Indicated: Connect Voltmeter red lead to Point 2. Depress “Down” trim button.

 - Battery Voltage Indicated: Test UP relay. Refer to page 5B-13 for relay test procedure.

 - Relay good: Pump motor wiring is defective. Pump motor is defective.

 - No Voltage Indicated: Connect Voltmeter red lead to Point 4 and black lead to ground. Depress “Down” trim button. If battery voltage is indicated, wire is open between Points 4 and 1.

 - No Voltage Indicated: There is an open circuit between Point 3 and positive (+) battery terminal. Check for loose or corroded connections. Check wires for open.

 - No Voltage Indicated: Relay Switch is defective.

 - No Voltage Indicated: Connect Voltmeter red lead to Point 5. If battery voltage is indicated, trim switch is faulty. If no battery voltage, check for loose or corroded connection at Point 5 or open circuit in wire supplying current to Point 5.

 - Test UP relay. Refer to page 5B-13 for relay test procedure.
Troubleshooting the “Up” Circuit

Connect Voltmeter red lead to Point 8 and black lead to ground.
Depress the “Up” trim button.

Battery Voltage Indicated:
Connect Voltmeter red lead to Point 9.

Battery Voltage Indicated:
• Connect Voltmeter red lead to Point 6.
• Depress “Up” trim button.

Battery Voltage Indicated:
• Test DOWN relay.
Refer to page 5B-13 for relay test procedure.

No Voltage Indicated:
• Relay Switch is defective.

No Voltage Indicated:
• Pump motor wiring is defective.
• Pump motor is defective.

No Voltage Indicated:
There is an open circuit between Point 9 and positive (+) battery terminal.
• Check for loose or corroded connections.
• Check wires for open.

No Voltage Indicated:
Connect Voltmeter red lead to Point 7 and black lead to ground. Depress “Up” trim button. If battery voltage is indicated, wire is open between Points 7 and 8.

No Voltage Indicated:
Connect Voltmeter red lead to Point 5. If battery voltage is indicated, trim switch is faulty. If no battery voltage, check for loose or corroded connection at Point 5 or open circuit in wire supplying current to Point 5.
Troubleshooting the “Down” and “Up” Circuits (All Circuits Inoperative)

Check in-line fuse (under cowl) to see if fuse is blown.

Blown Fuse:
- Correct problem that caused fuse to blow.
- Replace fuse.

Fuse Not Blown:
- Connect Voltmeter red lead to Point 3 and black lead to ground. Battery voltage should be indicated.

No Voltage Indicated:
- Check battery leads for poor connections or open circuits.
- Check battery charge.

Battery Voltage Indicated:
- Connect Voltmeter red lead to Point 8 and black lead to ground.
- Depress “Up” trim button and check for battery voltage.

No Voltage Indicated:
- Connect red Voltmeter lead to Point 5, and black lead to ground.

Battery Voltage Indicated:
- Check black ground wires for poor connection or poor ground, Point 10.
- Pump motor is faulty. Refer to “Motor and Electrical Tests/Repair”, following.

No Voltage Indicated:
- Check that voltage is being supplied to control by performing the following checks:
 - DO NOT start engine.
 - Turn ignition switch to “Run” position.
 - Check for voltage at any instrument, using a Voltmeter.

Battery Voltage Indicated:
- Trim switch is faulty or there is an open circuit in wires (green-white, blue-white) between trim buttons and trim pump.
 - Check trim switch.
 - Check all trim harness connectors for loose or corroded connections.
 - Check for pinched or severed wires.

No Voltage Indicated:
- Red wire is open between Point 3 and red terminal on back of the ignition switch.
- Check for loose or corroded connections.
- Check for open in wire.

Battery Voltage Indicated:
- There is an open circuit in wire between Point 5 and Red terminal on the back of the ignition switch.
Power Trim Assembly Removal and Installation

Removal

1. Remove clamps on transom bracket to free power trim wiring.
2. Raise outboard to full "Up" position and engage tilt lock lever.

WARNING

Failure to support outboard as shown could result in personal injury and/or damage to outboard or boat.

IMPORTANT: Support outboard as shown above to prevent engine from tipping when power trim retaining pin is removed.
3/8 in. diameter metal rod (a used shift shaft works well)

a - Drill holes for retaining clips

METRIC CONVERSION
- 14 in. = 35.56 cm.
- 2 in. = 50.8 mm
- 3/8 in. = 9.5 mm.
- 1/4 in. = 6.35 mm.

CAUTION
Disconnect battery cables at battery before removing power trim wires from solenoids.

3. Disconnect power trim wires at solenoids (BLUE, GREEN, and BLACK) or if relay style, disconnect (BLUE and GREEN) bullet connector harness.

4. Open filler cap and release any remaining pressure in the system.

IMPORTANT: Outboards equipped with thru-the-tilt-tube steering - remove steering link arm from end of steering cable and cable retaining nut from tilt tube.
IMPORTANT: Cross pin (a) should not be reused. Replace with new cross pin.

5. Drive out cross pin, push out upper swivel pin, and remove 3 bolts and washers in port clamp bracket.

6. Remove 3 bolts and washers and in starboard transom bracket.

7. Remove outboard transom mounting bolts and loosen tilt tube nut until nut is flush with end of tilt tube thread. Remove system from outboard.
Installation

1. Paint any exposed metal surfaces to prevent corrosion.

2. Apply Loctite 271 to screws. Install trim system, starboard transom bracket, and tilt tube nut.

3. Use a 12 volt power source to extend tilt ram up to align upper swivel shaft hole and end of ram. Connect trim motor wires [BLUE wire to POSITIVE (+), BLACK wire to NEGATIVE (–)]. If ram extends too far, retract ram by connecting GREEN wire to POSITIVE (+).

4. Install Upper Swivel Pin with slotted end to left (port) side of engine.

5. Position slot on end of swivel shaft in line with hole in tilt ram end. Insert a punch into tilt ram hole to align cross hole in upper swivel shaft. Tap new cross pin in until flush.

IMPORTANT: Cross pin should not be reused. Install a new pin.

a - Upper Swivel Shaft (Slot is in line with cross hole)
b - Chamfered End of Hole (Faces away from transom)
c - Retaining Pin
d - Tilt Ram End

NOTE: The 2 power leads going to the trim motor should be encapsulated with conduit tubing. If tubing has not been previously installed, order 32-828547-353 and cut to appropriate length.

7. Apply marine sealer to shanks of mount bolts and install transom mount bolts.

IMPORTANT: Do not use an impact driver to tighten transom mount bolts.

Apply marine sealer to threads of mount bolts. Secure with flat washers and locknuts. Be sure installation is watertight.

8. Tighten tilt tube nut securely.

IMPORTANT: Outboards equipped with thru-the-tilt-tube steering: Tighten steering cable retaining nut securely to tilt tube.

9. Apply Quicksilver Liquid Neoprene (91-25511--2) on all electrical connections.
WARNING

Electrical wires passing through cowl openings must be protected from chafing or being cut. Follow the recommended procedures outlined in Section 1D of this Manual. Failure to protect wires as described could result in electrical system failure and/or injury to occupants of boat.

Testing Power Trim System With Test Gauge Kit (91-52915A6)

IMPORTANT: This test will not locate problems in the trim system. The test will show if the system is correct after a repair. If minimum pressures are not obtainable, the trim system requires additional repair.

“UP” Pressure Check

IMPORTANT: Insure battery is fully charged before performing tests.

1. Tilt outboard to full “Up” position and engage tilt lock lever.
2. Slowly remove “Fill” plug to bleed pressure from reservoir.
3. Remove circlip securing manual release valve and unscrew release valve from trim assembly.

NOTE: A small amount of trim fluid may drip from manual release valve hole. Place a suitable container under trim assembly to collect any leakage.

NOTE: Assemble test adaptor by using O-ring installation tool to position small O-ring onto adaptor 1st, then install medium O-ring and lastly large O-ring. Thread brass fitting into test adaptor securely using teflon tape on threads.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Test Adaptor (91-822778A2)</td>
</tr>
<tr>
<td>b</td>
<td>O-ring Installation Tool</td>
</tr>
<tr>
<td>c</td>
<td>Small O-ring (Install 1st)</td>
</tr>
<tr>
<td>d</td>
<td>Medium O-ring (Install 2nd)</td>
</tr>
<tr>
<td>e</td>
<td>Large O-ring (Install Last)</td>
</tr>
<tr>
<td>f</td>
<td>Brass Fitting</td>
</tr>
<tr>
<td>g</td>
<td>Apply Teflon Tape</td>
</tr>
</tbody>
</table>

54457
4. Install test adaptor 91-822778A2 into manual release valve hole.

5. Thread hose from Test Gauge Kit (91-52915A6) into brass fitting on adaptor.

6. Reinstall fill plug.
7. Run trim “UP”.
8. Disengage tilt lock lever.
9. Move outboard “IN” until hole in swivel bracket “ear” aligns with the 3rd tilt hole in transom bracket. Lock engine in trim range by installing a 3/8 in. (9.5 mm) diameter tilt pin or two 3/8 in. (9.5 mm) hardened bolts and nuts thru the transom brackets and swivel bracket in the hole shown.

![Diagram](image)

a - Tilt Pin Hole (Install Spare Tilt Pin or Hardened Bolts and Nuts)

10. Open valve (a) and close valve (b).

![Diagram](image)

b - Valve locations

11. Run trim “UP”. The minimum pressure should be 1300 P.S.I. (91 kg/cm²).

12. Run trim “DOWN” to release pressure and remove spare tilt pin or bolts and nuts.

13. Tilt outboard full “UP” and engage tilt lock lever.

14. Slowly remove “Fill” plug to bleed pressure.

15. Remove test gauge hose and adapter.

17. Retighten “Fill” plug.

NOTE: If pressure is less than 1300 PSI (91 kg/cm²), troubleshoot system per instructions on page 5B-16.
“DOWN” Pressure Check

IMPORTANT: Insure battery is fully charged before performing tests.

1. Tilt outboard to full “Up” position and engage tilt lock lever.
2. Slowly remove “Fill” plug to bleed pressure from reservoir.
3. Remove circlip securing manual release valve and unscrew release valve from trim assembly.

NOTE: A small amount of trim fluid may drip from manual release valve hole. Place a suitable container under trim assembly to collect any leakage.

NOTE: Assemble test adaptor by using O-ring installation tool to position small O-ring onto adaptor 1st, then install medium O-ring and lastly large O-ring. Thread brass fitting into test adaptor securely using teflon tape on threads.

4. Install test adaptor 91-82778A3 into manual release valve hole.

Diagram:

- **a** - Test Adaptor (91-82778A3)
- **b** - O-ring Installation Tool
- **c** - Small O-ring (Install 1st)
- **d** - Medium O-ring (Install 2nd)
- **e** - Large O-ring (Install Last)
- **f** - Brass Fitting
- **g** - Apply Teflon Tape

Diagram:

- **a** - Test Adaptor (91-82778A3)
5. Thread hose from Test Gauge Kit (91-52915A6) into brass fitting on adaptor.

5. Thread hose from Test Gauge Kit (91-52915A6) into brass fitting on adaptor.

6. Reinstall fill plug.
7. Run trim “UP”.
8. Disengage tilt lock lever.
9. Open valve (f) and close valve (g).
10. Run trim “DOWN”. Minimum pressure should be 500 P.S.I. (35 kg/cm²).
11. Tilt outboard full “UP” and engage tilt lock lever.
12. Slowly remove “Fill” plug to bleed pressure.
13. Remove test gauge hose and adaptor.
15. Retighten “Fill” plug.

NOTE: If pressure is less than 500 PSI (35 kg/cm²), troubleshoot system per instructions on Page 5B-15.
Hydraulic Repair

TRIM ROD REMOVAL AND REPAIR

NOTE: Power Trim does not have to be removed from outboard to remove trim rods.

1. Tilt outboard to full “UP” position and engage tilt lock lever.
2. Slowly remove “Fill” plug to bleed reservoir pressure.
3. Turn Manual Release Valve 3 to 4 turns (counterclockwise) to bleed remaining pressure.
4. Remove trim rod cylinder caps.

NOTE: Place a clean pan under trim system to catch fluid.

5. Install trim rod removal tool and pull trim rod from cylinder.

- **a** - Trim Rod Cylinder Cap
- **b** - Turn Counterclockwise to Remove
- **c** - Removal Tool (91-44487A1)
- **d** - Spanner Wrench (91-74951)

a - Trim Rod Removal Tool (91-44486A1)
CAUTION
Do not remove check valve (a). Check valve is preset to operate at a specific pressure. Removal and installation of check valve could result in improper operating pressure and possible system damage.

NOTE: Check valve is in port side trim rod only.

NOTE: Certain models may have trim limit reducers installed on the trim rod to limit trim out angle. Each reducer limits the amount of total trim by 2°. A maximum of 5 reducers may be installed on each trim rod.

1. Inspect check valve and check valve screen for debris; if debris cannot be removed, replace trim rod assembly. Clean trim rod with parts cleaner and dry with compressed air.

Trim Rod End Cap Seal

1. Inspect trim cap end seal and replace if damaged or if seal does not keep trim rod clean.

2. Install new seal with seal lip up.

TRIM ROD INSTALLATION

IMPORTANT: Components must be free of dirt and lint. Any debris in the system can cause system to malfunction.

NOTE: Install trim rod with check valve in the port (left) cylinder.

1. Apply ATF Dextron III or Quicksilver Power Trim and Steering Fluid on all O-rings and seals before installation.
2. Install trim rods and caps. Use installation tool (91-44487A1) or spanner wrench (91-74951) to tighten caps securely.

![Diagram](image)

- **a** - Trim Rods
- **b** - Cylinder End Caps
- **c** - Rod End Rollers (lubricate with Quicksilver Anti-Corrosion Grease or Special Lubricant 101)

Tilt Ram

REMOVAL - TILT ROD ASSEMBLY ONLY

NOTE: Tilt Rod Assembly can be removed from cylinder without removing entire power trim system from outboard.

TILT RAM COMPONENTS

![Diagram](image)

- **1** - Housing - Tilt Ram
- **2** - O-ring* (5)
- **3** - Memory Piston**
- **4** - Washer
- **5** - Piston Assembly
- **6** - End Cap
- **7** - Oil Seal
- **8** - Bolt (Design 1)
- **9** - Nut (Design 2)
- **10** - Tilt Rod (Design 1)
- **11** - Tilt Rod (Design 2)

*O-ring Repair Kit Available, P.N. 811607A1 (Includes item 7, Oil Seal)

**Memory piston (3) for tilt rods (j and k) are different and must be used with correct tilt rod/cylinder assembly. Memory piston for Design 1 tilt rod is flat, Design 2 is dished to clear nut and thread.
TILT RAM REMOVAL - POWER TRIM SYSTEM REMOVED FROM OUTBOARD

WARNING
Insure trim system is depressurized prior to tilt ram removal.

1. Remove cross pin.
2. Remove lower swivel pin.

Disassembly

1. Secure tilt ram in a soft jawed vise. Remove tilt rod and cap.

 a - Cap (Turn Counterclockwise to Remove)
 b - Spanner Wrench (91-74951)
 c - Tilt Rod - Pull to Remove
2. Clamp tilt rod in a soft jawed vise. Remove bolt or nut as applicable to disassemble rod assembly. Remove O-ring.

![Diagram of tilt rod assembly]

- **a** - Bolt (Design 1) or Stud/Nut (Design 2)
- **b** - O-Ring

IMPORTANT: Note Design 1 and 2 on page 5B-30. Design 1 tilt rod assembly replaces either tilt rod assembly. Either design will fit as a (replace) cylinder assembly complete. Design 2 will NOT fit a cylinder originally using a Design 1 tilt rod assembly. Memory Pistons for Design 1 and 2 differ also and must be used only on the cylinder the piston was removed from.

3. Remove washer, check valve assemblies, and piston.

NOTE: *Check valve held in by roll pin can be cleaned but not removed.*

![Diagram of check valve assembly]

- **a** - Washer
- **b** - Check Valve Assembly (7)
- **c** - Piston
4. Remove end cap from tilt rod.

5. Remove allen plug.

IMPORTANT: Remove plug from same side as holes in shaft.

```
   a - End Cap
   b - Allen Plug
   c - Hole In Shaft
```


```
   a - End Cap
   b - Allen Plug
   c - Hole In Shaft
```

7. Tap shaft into cylinder until shaft is positioned as shown.

```
   a - End Cap
   b - Allen Plug
   c - Hole In Shaft
```

WARNING

Memory Piston Cup may be expelled at a high velocity when air pressure is applied. Failure to place cylinder as shown below could result in personal injury.
8. Place cylinder as shown. Hold down on cylinder and inject air into shaft opening.

9. Remove shaft after Memory Piston Cup has been expelled. Replace allen plug removed in Step 5 and tighten securely.

CLEANING AND INSPECTION

1. Inspect all internal parts for damage or wear. Clean and replace parts as necessary.
2. Inspect tilt rod for scratches. Replace scraper seal in rod end cap if tilt rod is scratched or worn.
3. Slight scratches or tool marks less than 0.005 in. (0.1 mm) deep in cylinder are acceptable.

Scraper Seal Replacement

1. Remove components from end cap.
REASSEMBLY

IMPORTANT: Components must be clean for reassembly. Any debris in the system can cause the system to malfunction.

NOTE: Refer to “Tilt Ram Components” for proper O-ring sizes.

1. Apply ATF Dexron III or Quicksilver Power Trim and Steering Fluid on O-rings prior to reassembly.

2. Install O-ring on Memory Piston Cup and install in cylinder.

3. Assemble end cap.

4. Install end cap.

a - O-ring
b - Memory Piston Cup (Design 1 shown)
a - End Cap
b - O-ring (2)
c - Scraper seal
d - Washer
e - Retaining Ring
f - End Cap
5. Install components on rod.

![Diagram](image1)

51363

- **a** - Piston
- **b** - O-ring
- **c** - Check Valve Assembly (7)
- **d** - Washer
- **e** - Bolt or Locknut. (Tighten securely)

6. Clamp cylinder in a soft jawed vise and install tilt rod assembly. Use spanner wrench and tighten end cap securely.

![Diagram](image2)

51340

- **a** - Cylinder
- **b** - Tilt Rod Assembly
- **c** - End Cap (Tighten Securely.) Use Spanner Wrench.
TILT RAM ASSEMBLY INSTALLATION

1. Lubricate alignment tool (91-11230) and shaft. Use ATF Dexron III or Quicksilver Power Trim and Steering Fluid.

 ![Diagram](51369)

 a - Alignment Tool (91-11230)
 b - Shaft

2. Align tilt ram and housing using alignment tool.

3. Install shaft.

 ![Diagram](51348)

 a - Alignment Tool (91-11230)
 b - Shaft
 c - Groove
 d - Hole [Groove (c) will Align with this Hole]

4. Drive pin in until flush.

 ![Diagram](51356)

 a - Pin (Drive Against Knurled End)
Motor and Electrical Tests/Repair

Trim Pump Motor Test

WARNING

Do not perform this test near flammable materials, as a spark may occur while making electrical connections.

1. Connect a 12 volt power supply to motor wires; one motor lead to POSITIVE (+) battery terminal and the other motor lead to the NEGATIVE (−) battery terminal. Motor should run. Reverse motor leads between battery terminals. Motor should run.

2. If motor does not run, disassemble and check components.

Motor Disassembly

1. Remove 2 screws.
2. Remove can and armature from end cap. Use care not to drop armature.

![Diagram with labels (a: Can, b: Armature, c: End Cap)]

Armature Tests

TEST FOR SHORTS

Check armature on a Growler per the Growler manufacturer’s instructions. Replace armature if a short is indicated.

TEST FOR GROUND

1. Use an Ohmmeter (Rx1 scale). Connect one lead on armature shaft and other lead on commutator. If continuity is indicated, armature is grounded. Replace armature.
CHECKING AND CLEANING COMMUTATOR

1. If commutator is worn it may be turned on an armature conditioner or a lathe.
2. Clean commutator with “OO” sandpaper.

FIELD TESTS

IMPORTANT: Commutator end of armature must be installed in brushes when performing the following tests.

<table>
<thead>
<tr>
<th>Ohmmeter Leads Between</th>
<th>Resistance (Ohms)</th>
<th>Scale Reading* (Rx1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE and BLACK Motor Wires</td>
<td>0</td>
<td>(Rx1)</td>
</tr>
<tr>
<td>BLACK Motor Wire, and Frame (Motor Housing)</td>
<td>No Continuity</td>
<td>(Rx1)</td>
</tr>
<tr>
<td>BLUE Motor Wire and Frame</td>
<td>No Continuity</td>
<td>(Rx1)</td>
</tr>
</tbody>
</table>

*If specified readings are not obtained, check for:
• defective armature
• dirty or worn brushes
• dirty or worn commutator

If defective components are found, repair or replace component(s) and retest.

Motor Repair

REMOVAL

NOTE: Power Trim System does not have to be removed from outboard to repair/replace motor.

DISASSEMBLY

Refer to “Motor Disassembly” on page 5B-38 to disassemble motor from pump.
CLEANING AND INSPECTION

Inspect O-rings and replace if necessary. Carefully inspect power cord for cuts or tears which will allow water to enter motor. Replace cord if cut or torn. Clean, inspect, and test motor components. Refer to “Brush Replacement”, “Armature Test”, and “Field Tests” for inspection and test procedures.

BRUSH REPLACEMENT

1. Brush replacement is required if brushes are pitted, chipped, or if distance (a) between the brush pigtail and end of brush holder slot is 1/16 in. or less. Check distance with armature installed.
2. To replace brush card, disconnect spade terminal.
3. Cut crimped brush lead.
4. Remove 2 screws securing brush card to end cap.

5. Install new brush card (BRUSH and SEAL KIT 828714A1).
6. Crimp metal connector onto motor lead and new brush lead.
7. Connect spade connector motor lead to brush card connector.
8. Secure brush card to end cap with 2 screws and lockwashers.
1. Inspect seal and O-ring for cuts and abrasions. If replacement is required, install BRUSH and SEAL KIT 828714A1.

2. Inspect bushing for wear. If bushing appears to be excessively worn – grooves, scratches, etc. – install END FRAME ASSEMBLY (COMPLETE) 828715A1.

3. If trim motor is overheated, a thermoswitch located under brush card will open. Normally, this switch will reset itself within 1 minute.
Reassembly

IMPORTANT: Components must be clean. Any debris in power trim system can cause system to malfunction.

1. Install armature into end cap/brush card assembly.

```
a - Armature  
b - Shim  
c - End Cap Assembly  
d - Armature (Spread brushes to install armature into end cap)
```

2. Install O-rings in end cap.

```
a - O-rings
```
IMPORTANT: Attach Vise Grip® pliers to armature shaft before installing frame assembly. The Vise Grip® pliers will prevent the armature from being drawn out of the brush card assembly by the frame magnets while installing the frame assembly.

3. Install Vise Grip® pliers on armature shaft.
4. Carefully install can over armature.
5. Position harness retainer hole over tab in end cap.
6. Secure frame assembly to end cap with 2 screws.

- a - Vise Grip® Pliers
- b - Armature Shaft
- c - O-ring
- d - End Cap
- e - Harness Retainer
- f - Retainer Hole
- g - O-ring
- h - Can
- i - Screws
Reassembly - Motor and Pump

NOTE: Drive shaft is a loose part and may fall out of position.

1. Install pump onto power trim manifold. Insure O-rings are in proper locations. Secure with two (2) screws. Torque screws to 80 lb. in. (9 N·m).

IMPORTANT: Install pump with location flat facing towards starboard transom bracket.

2. Fill pump with ATF Dexron III or Quicksilver Power Trim and Steering Fluid prior to installing motor.

3. Install motor, secure with two (2) screws. Route wiring; refer to Wiring Diagrams in this service manual.

![Diagram of parts](image)

- **a** - Pump (Flat Towards Starboard Transom Bracket)
- **b** - Flat - Faces Starboard Transom Bracket)
- **c** - O-rings (4)
- **d** - Drive Shaft (Install in Center Hole in Pump)
NOTE: Verify motor and drive shaft are aligned.

4. Complete reassembly of Power Trim System as outlined in “Installation” on page 5B-21.

Priming Power Trim System

1. Fill system with Quicksilver Power Trim and Steering Fluid or Automatic Transmission Fluid (ATF) Type F, FA, Dexron II or Dexron III. Refer to “Fill, Check, and Purge” on page 5B-10.

IMPORTANT: Run Trim System in short “jogs” until pump motor primes and trim system moves. If trim motor is run without priming pump, drive shaft failure could result.

Trim Sender Test

1. Check trim sender black lead for proper ground.
2. Trim outboard to full “DOWN” position.
3. Place ignition switch to “ON” position.
4. Disconnect BRN/WHT trim sender wire from trim sender harness.
5. Connect Ohmmeter (Rx1 scale) leads between outboard ground and Point 1 (trim sender end).
6. Depress “UP” button. Ohmmeter needle should move as the outboard is trimmed up. If needle does not move, trim sender is defective.
Trim Indicator Gauge Needle Adjustment

1. Turn ignition key to “RUN” position.

2. Tilt outboard to full “IN” position. Needle of trim indicator gauge should be in full “IN” position.

3. If not, tilt outboard to full “OUT” position to gain access to trim sender and engage tilt lock lever.

4. Loosen trim sender screws and reposition trim sender.

5. Tighten trim sender screws.

![Diagram of Trim Indicator Gauge Needle Adjustment]

- **a** - Trim Sender
- **b** - Screws, Loosen to Rotate Sender
- **c** - Turn Sender **Counterclockwise** to raise needle reading
- **d** - Turn Sender **Clockwise** to Lower Needle Reading
- **e** - Tilt lock lever
Trim Indicator Wiring Diagrams

Wiring Diagram - For boats equipped with Quicksilver Commander Series side mount remote control.

Wiring Diagram - For boats equipped with Quicksilver Ignition/Choke and Main Harness Assembly.

a - Trim Indicator
b - Remote Control
c - Trim Sender
d - Engine Ground
e - To Engine
f - Ignition Switch
g - Power Trim Harness